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Introduction to SpinW

SpinW is a Matlab library that can solve spin Hamiltonians using mean field theory and linear spin wave theory. It is optimised for spin wave calculation on complex lattices that one often encounter experimentally.


Model

In short SpinW can solve the following spin Hamiltonian using classical and quasi classical numerical methods:


\[\mathcal{H}=\sum_{i,j}\mathbf{s}^\intercal_i\cdot J_{ij}\cdot \mathbf{s}_j + \sum_i \mathbf{s}^\intercal_i\cdot A_i\cdot \mathbf{s}_i + \mu_B\mathbf{B}^\intercal\cdot \sum_i\mathbf{g}_i\cdot \mathbf{s}_i\]

where \(\mathbf{s}_i\) are spin vector operators, \(J_{ij}\) are 3x3 exchange matrices describing coupling between spins, \(A_{ij}\) are 3x3 single ion anisotropy matrices, \(\mathbf{B}\) is external magnetic field, \(g_i\) are the g-tensors with 3x3 elements and \(\mu_B\) is the Bohr-magneton. The 3x3 matrices are necessary to include all possible anisotropic and antisymmetric interactions.




Features


Crystal structures


	definition of crystal lattice with arbitrary unit cell, using symmetry operators

	definition of non-magnetic atoms and magnetic atoms with arbitrary moment size

	publication quality plotting of crystal structures (atoms, labels, axes, surrounding polyhedron, anisotropy ellipsoids, DM vector, etc.)






Magnetic structures


	definition of 1D, 2D and 3D magnetic structures

	representation of single-Q incommensurate structures using rotating coordinate system or complex basis vectors

	generation of magnetic structures on a magnetic supercell

	plotting of magnetic structures






Magnetic interactions


	simple assignment of magnetic interactions to bonds based on bond length

	possible interactions: Heisenberg, Dzyaloshinskii-Moriya, anisotropic and general 3x3 exchange tensor

	arbitrary single ion anisotropy tensor (easy-plane, easy-axis, etc.)

	Zeeman energy in homogeneous magnetic field including arbitrary g-tensor

	calculation of symmetry allowed elements of the above tensors based on the crystallographic space group






Magnetic ground state optimisation


	minimization of the classical energy  assuming single-Q magnetic structure

	simulated annealing using the Metropolis algorithm on large magnetic supercells

	calculation of properties in thermodynamical equilibrium (heat capacity, magnetic susceptibility, etc.)

	magnetic structure factor calculation using FFT

	simulation of magnetic neutron diffraction and diffuse scattering






Spin wave simulation


	solution for sommensurate and single-Q incommensurate magnetic structures

	calculation of spin wave dispersion, spin-spin correlation functions

	calculation of neutron scattering cross section for unpolarized neutrons including the magnetic form factor

	calculation of polarized neutron scattering cross sections

	possibility to include different moment sizes for different magnetic atoms

	calculation of powder averaged spin wave spectrum






Plotting of spin wave spectrum


	plotting of dispersions and correlation functions

	calculation and plotting of the convoluted spectra for direct comparison with inelastic neutron scattering

	full integration into Horace for plotting and comparison with time of flight neutron data, see http://horace.isis.rl.ac.uk






Fitting spin wave spectra


	possible to fit any parameter of the Hamiltonian

	robust fitting, even when the number of simulated spin wave modes differs from the measured number of modes











          

      

      

    

  

    
      
          
            
  
SW Class

To perform calculation using the SpinW library, we need to create an
object (sw class type). It stores all the necessary parameters for the
calculation (crystal structure, interactions, magnetic structure, etc.).
In the object oriented programming dictionary, the data stored in an object,
are called properties. Beside the data, the object also has assigned
functions that perform different computations on the object data. These
functions are called methods and they take the object as first input
argument. To create an sw class object you can simply type:

model1 = sw






Properties

The output of the previous command shows all the data fields of model1.
Each data field has an initial value and any of them can be modified
directly:

model1.lattice.lat_const = [3 5 5];





The above command directly modifies the lattice parameters of the
lattice. Modifying propoerties directly is quick and very flexible but
prone to error. The most common mistake is that the new values are not
the same data type as the original ones. For example the field that
stores the lattice space group is integer type:

class(model1.lattice.sym)





Thus if we want to change it directly, we need an integer number:

model1.lattice.sym = int32(5);





This will change the crystal space group to ‘C 2’. To avoid most common
mistakes, there are several methods (functions) for modifying the above
properties that also perform additional error checking and makes certain
input conversions. For example all lattice related properties can be
modified using the genlattice() function:

model1.genlattice('lat_const',[3 5 5],'sym','C 2','angled',[90 90 90])





The alternative usage of the above function is the following:

genlattice(model1,'lat_const',[3 5 5],'sym','C 2','angled',[90 90 90])





This reflects better the input argument structure. The first argument is
the sw object ‘model1’. After the first argument comes option name and
value pairs. The first options is ‘lat_const’ and the value it expects
is a vector with 3 elements if the input vector has different length, the
function throws an error. The second option is ‘sym’ that also accepts
string input (name of the space group) that is automatically converted to
the index of the space group and stored in model1:

model1.lattice.sym





The last option is ‘angled’ that requires a vector with three elements
and defines the alpha, beta, gamma lattice angles in degree. This will be
converted into radian and stored:

model1.lattice.angle








List of properties

The sw object properties store all the information necessary for the spin
wave calculation. There are eight public properties of the sw class each with several subfields:



	sw.lattice

	sw.unit_cell

	sw.twin

	sw.matrix

	sw.single_ion

	sw.coupling

	sw.mag_str

	sw.unit







	
sw.lattice

	The lattice field stores the lattice parameters and space group information. The subfields are:


	lat_const

	Lattice constants in a row vector with three elements (\(a\), \(b\) and \(c\)) in Å units.

	angle

	\(\alpha\), \(\beta\) and \(\gamma\) angles in a row vector with three elements in radian units.

	sym

	Crystal space group, single integer (int32 type) that gives the line number in the symmetry.dat file. This file stores the generators of the space group and by default contains the 230 crystallographic space groups with standard settings.



See also sw.genlattice(), sw.abc(), sw.basisvector(), sw.nosym().






	
sw.unit_cell

	The unit_cell field stores the information on the atoms in the crystallographic unit cell. Subfields are:


	r

	Atomic positions in lattice units, matrix with dimensions of [3 nAtom], in lattice units.

	S

	Spin (or angular momentum) quantum number of the atoms, row vector with nAtom number of elements. Non-magnetic atoms have \(S=0\).

	label

	String label of the atoms in a cell with dimensions of [1 nAtom].

	color

	Color of the atoms for plotting. Stored in a matrix with dimensions of [3 nAtom], every column is an RGB code (int32 numbers between 0-255).



See also sw.addatom(), sw.atom(), sw.matom(), sw.newcell().






	
sw.twin

	The twin field stores information on crystallographic twins. The subfields are:


	rotc

	Rotation matrices in the xyz coordinate system for every twin, stored in a matrix with dimensions of [3 3 nTwin].

	vol

	Relative volume of the twins, stored in a row vector with nTwin elements.



See also sw.addtwin(), sw.twinq(), sw.ntwin().






	
sw.matrix

	The matrix field stores 3x3 matrices that can be referenced in the magnetic Hailtonian. The subfields are:


	mat

	It stores the actual values of 3x3 matrices stacked along the third dimension with dimensions of [3 3 nMat].

	color

	RGB color codes assigned for every matrix, stored in a matrix with dimensions of [3 nMatrix], each column is an [R;G;B] code with int32 numbers between 0 and 255.

	label

	Label for every matrix, stored as strings in a cell with dimensions of [1 nCell].



See also sw.addmatrix(), sw.getmatrix(), sw.setmatrix().






	
sw.single_ion

	The single_ion field stores the single ion expression of the Hamiltonian. The subfields are:


	aniso

	Row vector contains nMagAtom integers, each integer assignes one of the matrices from the sw.matrix field to a magnetic atom in the sw.matom() list as a single ion anisotropy. Zero means no assigned anisotropy matrix.

	g

	Row vector of nMagAtom integers, each integer assignes one of the matrices from the sw.matrix field to a magnetic atom in the sw.matom() list as a g-tensor.

	field

	External magnetic field stored in a row vector with the 3 components in the xyz coordinate system, default unit is Tesla.

	T

	Temperature, scalar, default unit is Kelvin.



See also sw.addaniso(), sw.addg(), sw.getmatrix(), sw.setmatrix(), sw.intmatrix(), sw.field().






	
sw.coupling

	The coupling field stores the list of bonds. Where each bond is defined between two magnetic atom. Each bond has a direction, it points from atom 1 to atom 2. In the subfiels every column defines a bond, the subfields are:


	dl

	Translation vector between the unit cells of the two interacting spins, stored in a matrix of integer numbers with dimensions of [3 nCoupling].

	atom1

	Stores the index of atom 1 for every bond pointing to the list of magnetic atoms in sw.matom() list, stored in a row vector with nCoupling elements.

	atom2

	Index of atom 2 for each bond.

	mat_idx

	Integer indices selecting  exchange matrices from sw.matrix field for every bond, stored in a matrix with dimensions of [3 nCoupling]. Maximum three matrices per bond can be assigned (zeros for no coupling).

	idx

	An integer index for every bond, an increasing number with bond length. Symmetry equivalent bonds have the same index.



See also sw.gencoupling(), sw.addcoupling().






	
sw.mag_str

	The mag_str field stores the magnetic structure. It can store single-Q structures or multi-Q structures on a magnetic supercell. Strictly speaking it stores the expectation value of the spin of each magnetic atom. The magnetic moment directions are given by \(g_i\cdot \langle S_i\rangle\). The subfields are:


	S

	It stores the spin directions for every magnetic atom either in the crystallographic unit cell or in a magnetic supercell in a matrix with dimensions of [3 nMagExt]. Every column stores \(\langle S_x\rangle, \langle S_y\rangle, \langle S_z\rangle\) spin components in the xyz coordinate system. The number of spins in the supercell is:

nMagExt = nMagAtom*prod(mag_str.N_ext);







	k

	Magnetic ordering wave vector stored in a row vector with 3 components in reciprocal lattice units. Default value is [0 0 0].

	n

	Normal vector to the rotation of the moments in case of non-zero ordering wave vector (single-Q magnetic structures), row vector with three elements. The components are in the xyz coordinate system. Default value is [0 0 1].

	N_ext

	Dimensions of the magnetic supercell in lattice units stored in a row vector with three elements. Default value is [1 1 1] if the magnetic cell is identical to the crystallographic cell. The three elements extends the cell along the \(a, b, c\) axes.



See also sw.genmagstr(), sw.optmagstr(), sw.anneal(), sw.nmagext(), sw.structfact(), sw.optmagsteep().






	
sw.unit

	The unit field stores the conversion factors between energy, magnetic field and temeprature units in the Hamiltonian. Defaults units are meV, Tesla and Kelvin for energy, magnetic field and temperature respectively. To use identical units for energy, magnetic field and temperature use 1 for each subfields. The subfields are:


	kB

	Boltzmann constant, default value is 0.0862 meV/K.

	muB

	Bohr magneton, default value is 0.0579 meV/T.










Methods

In line with the above example the general argument structure of the
method functions is one of the following:

function(obj,'Option1',Value1,'Option2',Value2,...)
function(obj,Value1,Value2,...)





The first type of argument list is used for functions that require
variable number of input parameters with default values. The second type
of argument structure is used for functions that require maximum up to
three fixed input parameter. Every method has help that can be called by
one of the following methods:



	selecting the function name in the Editor/Command Window and pressing F1



	in the Command Window typing for example:

help sw.genlattice












This shows the help of the genlattice() function in the Command Window.
To open the help in a separate window you need to write:

doc sw.genlattice





To unambiguously identify the functions it is usefull to refer them as
sw.function() this way matlab knows which function to select from several
that has the same name. For example the plot() funcion is also defined
for the sw class. However by writing:

help plot





we get the help for the standard Matlab plot function. To get what we
want use:

help sw.plot





By the way this function is one of the most usefull ones. It can show
effectively all information stored in the sw object by plotting crystal
structure, couplings, magnetic structure etc. Calling it on an empty
object shows only the unit cell:

plot(model1)






[image: _images/swclass1.png]
Plot of empty sw object.



As you might noticed, there is an alternative calling of any method
function: obj.function(...), this is just equivalent to the previous
argument structures.




Copy

The sw class belong to the so called handle class. It means in short that
the model1 variable is just a pointer to the memory where the class is
stored. Thus by doing the following:

model2 = model1;





will only duplicate the pointer but not the values stored in the sw object. Thus if I change something in model1, model2 will change as well. To clone the object (the equivalent of the usual ‘=’ operation in Matlab) the sw.copy() function is necessary:

model2 = copy(model1);











          

      

      

    

  

    
      
          
            
  
Crystal structure





          

      

      

    

  

    
      
          
            
  
List of functions


	
class sw

	




	
sw.genlattice(obj, 'option1', value1, 'option2', value2...)

	Generates crystal lattice from given parameters.

Input


	obj

	sw class object.



Options


	angled

	\(\alpha, \beta, \gamma\) angles in degree, row vector with three elements.

	angle

	\(\alpha, \beta, \gamma\) angles in radian, row vector with three elements.

	lat_const

	\(a, b, c\) lattice parameters, row vector with three elements.

	sym

	Space group index, or space group name (string).



Description

Alternatively the lattice parameters can be given directly when the sw
object is created using: sw(inpStr), where struct contains the fields
with initial parameters, e.g.:

inpStr.lattice.lat_const = [3 3 4];





The sym option points to the appropriate line in the symmetry.dat file,
where every line defines a space group by its generators. The first 230
lines contains all crystallographic space groups with standard setting
from the International Tables of Crystallography. Additional lines
can be added to the symmetry.dat file using the sw_addsym() function.
Every line in the symmetry.dat file can be referenced by either its line
index or by its label (string).

If the sym option is 0, no symmetry will be used. The gencoupling()
method will determine the equivalent bonds based on bond length.

Output

The lattice field will be changed based on the input, the lattice
constants stored directly and the optional space group string is
converted to the integer type index.

Example

crystal = sw;
crystal.genlattice('lat_const',[3 3 4],'angled',[90 90 120],'sym','P 6')
crystal.genlattice('lat_const',[3 3 4],'angled',[90 90 120],'sym',168)





The two lines are equivalent, both will create hexagonal lattice, with
P 6 space group.
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